Whatsapp SyZ Cominsa

Un nivel adecuado de tensión en los terminales de servicio de suministro de los consumidores es esencial para el funcionamiento óptimo de los equipos y los dispositivos.

Los valores prácticos de corriente y las consecuentes caídas de tensión en un sistema de BT, demuestran la importancia de mantener un alto factor de potencia como medio para reducir las caídas de tensión.

La calidad del suministro de la red de BT en su sentido más amplio implica lo siguiente:

  • Cumplimiento de los límites reglamentarios de magnitud y de frecuencia.
  • Libertad de fluctuación continua dentro de esos límites.
  • Suministro ininterrumpido de alimentación, excepto en el caso de cortes programados por motivos de mantenimiento, o como resultado de defectos del sistema u otras emergencias.
  • Conservación de una forma de onda casi sinusoidal.

En la mayoría de los países, las autoridades responsables del suministro eléctrico tienen la obligación de mantener el nivel de tensión en el punto de servicio de los consumidores dentro de los límites del ± 5% (o en algunos casos ± 6% o más, consúltese la tabla C1) del valor nominal declarado.

Una vez más, IEC y la mayoría de estándares nacionales recomiendan que los dispositivos de BT se diseñen y se prueben de modo que funcionen de forma óptima dentro de los límites del ± 10% de la tensión nominal. Esto deja un margen, en las peores condiciones (de menos del 5% en el punto de servicio, por ejemplo), de una caída de tensión permisible del 5% en el cableado de la instalación.

Las caídas de tensión en un sistema típico de distribución ocurren del siguiente modo: la tensión en los terminales de MT de un transformador de MT/BT normalmente se mantiene dentro de una banda del ± 2% por la acción de reguladores automáticos en carga de los transformadores en las subestaciones de transformación, que alimentan la red de MT desde un sistema de transporte de tensión superior.

Si el transformador de MT/BT se encuentra en una ubicación cercana a la subestación de transformación, la banda de tensión del ± 2% puede centrarse en un nivel de tensión que sea superior al valor nominal de MT. Por ejemplo, la tensión podría ser de 20,5 kV ± 2% en un sistema de 20 kV. En este caso, el transformador de distribución de MT/BT debería tener el regulador seleccionado en la posición de variación de + 2,5%.

A la inversa, en ubicaciones remotas de las subestaciones de transformación, es posible un valor de 19,5 kV ± 2%, en cuyo caso, el regulador deberá estar seleccionado en la posición de –5%.

Los diferentes niveles de tensión en un sistema son normales. Además, estas diferencias de tensión son el motivo por el que se emplea el término "nominal" al referirse a la tensión del sistema.

Aplicación práctica

Con el transformador de MT/BT correctamente regulado, se mantendrá una tensión de salida del transformador en vacío dentro de una banda del ± 2% de su tensión de salida en vacío.

Para garantizar que el transformador pueda mantener el nivel de tensión necesario cuando se encuentre a plena carga, la tensión de salida en vacío debe ser lo más alta posible, sin superar el límite superior del + 5% (adoptado para este ejemplo). En la práctica actual, las relaciones de devanado generalmente producen una tensión de salida de alrededor del 104% en vacío (Los transformadores diseñados para la norma IEC 230/400 V tendrán una salida en vacío de 420 V, es decir, 105% de la tensión nominal.), cuando se aplica la tensión nominal en MT, o se corrige mediante el regulador, tal y como se describe anteriormente. Esto produciría una banda de tensión de entre el 102% y el 106% en el caso actual.

Un transformador de distribución de BT típico tiene una tensión de cortocircuito del 5%. Si se asume que su tensión de resistencia es una décima parte de este valor, la caída de tensión dentro del transformador al suministrar una carga completa con un factor de potencia de 0,8, será:

V% caída = R% cos ϕ + X% sin ϕ
= 0,5 × 0,8 + 5 × 0,6
= 0,4 + 3 = 3,4%

La banda de tensión en los terminales de salida del transformador a plena carga será por lo tanto de (102 – 3,4) = 98,6% a (106 – 3,4) = 102,6%. La caída de tensión máxima permisible en un distribuidor es por lo tanto 98,6 – 95 = 3,6%.

En términos prácticos, esto significa que un cable de distribución de tamaño medio, de cuatro hilos, trifásico de 230/400 V de conductores de cobre de 240 mm2 podría suministrar una carga total de 292 kVA con un factor de potencia de 0,8, distribuidos de forma uniforme en 306 metros del distribuidor. De modo alternativo, la misma carga en las instalaciones de un solo consumidor podría suministrarse a una distancia de 153 desde el transformador, para la misma caída de tensión, etc.

Como interés, cabe destacar que la especificación máxima del cable, basada en los cálculos derivados de la IEC 60287 es 290 kVA, y de este modo, el margen de tensión del 3,6% no es demasiado restrictivo, es decir, el cable se puede cargar completamente para las distancias que normalmente son necesarias en los sistemas de distribución de BT.

Además, un factor de potencia de 0,8 es adecuado para cargas industriales. En áreas semiindustriales mixtas, 0,85 es un valor más común, mientras que por lo general se utiliza el valor de 0,9 para cálculos relacionados con áreas residenciales, de modo que la caída de tensión indicada anteriormente se puede considerar como un ejemplo “del peor de los casos”.

Si encontraste útil este artículo, te invitamos a compartirlo con otras personas que puedan estar interesadas. También puedes escribirnos a Esta dirección de correo electrónico está protegida contra spambots. Usted necesita tener Javascript activado para poder verla. para solicitar una Charla Técnica Gratis para la empresa donde estes trabajando.

 

Suscribete Gratis

Powered by Amazing-Templates.com 2014 - All Rights Reserved.